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Abstract

Matching molecular analogues is a computational chemistry
and bioinformatics research issue which is used to iden-
tify molecules that are structurally or functionally similar
to a target molecule. Recent studies on matching analogous
molecules have predominantly concentrated on enhancing ef-
fectiveness, often sidelining computational efficiency, partic-
ularly in contexts of low computational resources. This over-
sight poses challenges in many real applications (e.g., drug
discovery, catalyst generation and so forth). To tackle this is-
sue, we propose a general strategy named MapLE, aiming to
promptly match analogous molecules with low computational
resources by multi-metrics evaluation. Experimental evalua-
tion conducted on a public biomolecular dataset validates the
excellent and efficient performance of the proposed strategy.

Introduction
Matching analogues involves the identification of molecules
that resemble original compounds based on their chemical,
pharmacological, and structural characteristics. When ap-
plied to drug discovery, this procedure is of paramount im-
portance, as it could considerably hasten the investigation
of potential therapeutic agents. Indeed, there are numerous
untapped opportunities for drug discovery originating from
natural products (DeCorte 2016).

Most recent studies on matching analogues have primarily
focused on improving similarity screening accuracy rather
than on time efficiency optimization (Chen et al. 2023).
Nonetheless, current methodologies tend to slow down when
employed with fully enumerated chemical libraries, which
may contain billions of compounds.They often become im-
practical due to the substantial computational resources re-
quired (Sadybekov and Katritch 2023). Warr et al. intro-
duced Arthor, utilizing the RoundTable algorithm, which
could search for patterns over a billion molecules in a few
seconds (Warr et al. 2022). However, search time scales with
database size, and the vast growth of chemical space may
pose challenges.

To address these challenges, we introduce a general
framework that incorporates several efficient strategies.
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Specifically, we perform multiple feature extraction on pro-
cessed molecular objects and a progressive evaluation strat-
egy to match the analogs promptly. By integrating data from
these multiple features, our framework results in competi-
tive evaluation performance and a better understanding of
the impact of various information sources. In addition, we
streamline the molecule accesses in the process of molecule
matching by a progressive prompt evaluation, ultimately re-
ducing the execution time and computational resources.

Proposed Strategy
As shown in Figure 1, we introduce MapLE—a general
framework for Matching molecular analogues promptly
with Low computational resources by multi-metrics
Evaluation—which integrates multiple similarity metrics
and introduces a progressive prompt evaluation technique
tailored to speed up the screening process.

Multi-metrics Fusion. Our approach intuitively considers
multiple attributes of a molecule and synthesize them into a
cohesive evaluation. As depicted in Figure 1 (a), our gen-
eral framework is hierarchical, incorporating various fea-
tures of the molecule. Specifically, we rank the similarity
among molecules within a set by considering pharmaco-
logical, structural, and chemical features in a multi-metrics
evaluation. Moreover, within the category of structural fea-
tures, we further employ sub-metrics (e.g., topo1, topo2, and
topo3) to analyze the molecule from multiple topological
perspectives (Kim et al. 2023).

To efficiently manage these features, we construct a set of
inverted lists. It is important to note that each new molecule
is broken down into several feature indices. When adding
a new molecule to the database, we only need to update
the lists containing these specific indices. Thereby, this ap-
proach minimizes irrelevant traversal queries, thus saving
time, especially when dealing with large databases.

Progressive Prompt Evaluation. Inspired by the search
for the top-k semantically similar sentences in the field of
Natural Language Processing (NLP), we build a mapping
between molecular structures and word sentences. Specifi-
cally, we consider the substructures or features of a molecule
analogous to the words in sentences. We outline our strategy
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Figure 1: The general framework of MapLE.

for measuring the similarity between query moleculesQ and
the top-k candidate similar molecule L, as follows:

S̃immetric(L,Q) =

δ∑
i=1

(fL(i) ∧ fQ(i))

δ∑
i=1

(fL(i) ∨ fQ(i))
(1)

where f(i) is the frequency of the i-th feature in the
molecule, δ is the size of the whole molecular features, and
we use the tanimoto coefficient to compute similarity under
a single metric of L and Q as Simmetric(L,Q). To con-
solidate these different metrics of similarity, we present the
similarity as:

S̃im(L,Q) =
∑

wj · S̃imj(L,Q) (2)

where S̃imj is measured under a specific metric similarity,
and wj denotes the corresponding weight of the metric.

We propose an efficient strategy to assemble the on-the-

fly. We denote that S̃imj

top−k
is the normalized similarity

score of the top-k molecule in the metric j, and the t is the

threshold where t =
∑
wj · S̃imj

top−k
. We will progres-

sively output the top-k result when a candidate molecule L
meet the condition that S̃im(L,Q) ≥ t, since it is at least

for one metric that S̃imj(P,Q) ≥ S̃imj

top−k
. It means we

only matching the top of molecule list rather than traversal
the whole list, which will save a lot query time to get top-k
analogues. More details shown in Figure 1 (b) make a exam-
ple of our strategy.

Experiments
We conducted our experiments on the CASF-2016 dataset,
a widely-used biomolecular dataset with thousands of high-
quality molecular structures. As shown in Figure 2 (a), the
baseline accesses all the ligand molecules in the dataset,
with the query time remaining consistent regardless of the
value of k. Notably, the top-1 values are returned almost in-
stantly, and as k increases, a progressively greater number
of results are obtained. In comparison, our proposed method

(a) #Candidates accessed (b) Query time of different k-value

Figure 2: The evaluation result of the MapLE.

showcases its efficiency, particularly with smaller values of
k. Additionally, we monitored the number of accessed can-
didate values. Figure 2 (b) details the count of candidates
accessed during the data collection phase.

Acknowledgments
This work is supported by National Natural Science Foun-
dation of China (Grant No.92370127 and No.22033002).

References
Chen, Q.; Li, X.; Geng, K.; and Wang, M. 2023. Context-
Aware Safe Medication Recommendations with Molecular
Graph and DDI Graph Embedding. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6): 7053–7060.
DeCorte, B. L. 2016. Underexplored Opportunities for Nat-
ural Products in Drug Discovery. Journal of Medicinal
Chemistry, 59(20): 9295–9304.
Kim, S.; Lee, D.; Kang, S.; Lee, S.; and Yu, H. 2023. Learn-
ing Topology-Specific Experts for Molecular Property Pre-
diction. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(7): 8291–8299.
Sadybekov, A. V.; and Katritch, V. 2023. Computational Ap-
proaches Streamlining Drug Discovery. Nature, 616(7958):
673—685.
Warr, W. A.; Nicklaus, M. C.; Nicolaou, C. A.; and Rarey,
M. 2022. Exploration of Ultralarge Compound Collections
for Drug Discovery. Journal of Chemical Information and
Modeling, 62(9): 2021–2034. PMID: 35421301.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23457


